Control of Metabolic Homeostasis by Stress Signaling Is Mediated by the Lipocalin NLaz
نویسندگان
چکیده
Metabolic homeostasis in metazoans is regulated by endocrine control of insulin/IGF signaling (IIS) activity. Stress and inflammatory signaling pathways--such as Jun-N-terminal Kinase (JNK) signaling--repress IIS, curtailing anabolic processes to promote stress tolerance and extend lifespan. While this interaction constitutes an adaptive response that allows managing energy resources under stress conditions, excessive JNK activity in adipose tissue of vertebrates has been found to cause insulin resistance, promoting type II diabetes. Thus, the interaction between JNK and IIS has to be tightly regulated to ensure proper metabolic adaptation to environmental challenges. Here, we identify a new regulatory mechanism by which JNK influences metabolism systemically. We show that JNK signaling is required for metabolic homeostasis in flies and that this function is mediated by the Drosophila Lipocalin family member Neural Lazarillo (NLaz), a homologue of vertebrate Apolipoprotein D (ApoD) and Retinol Binding Protein 4 (RBP4). Lipocalins are emerging as central regulators of peripheral insulin sensitivity and have been implicated in metabolic diseases. NLaz is transcriptionally regulated by JNK signaling and is required for JNK-mediated stress and starvation tolerance. Loss of NLaz function reduces stress resistance and lifespan, while its over-expression represses growth, promotes stress tolerance and extends lifespan--phenotypes that are consistent with reduced IIS activity. Accordingly, we find that NLaz represses IIS activity in larvae and adult flies. Our results show that JNK-NLaz signaling antagonizes IIS and is critical for metabolic adaptation of the organism to environmental challenges. The JNK pathway and Lipocalins are structurally and functionally conserved, suggesting that similar interactions represent an evolutionarily conserved system for the control of metabolic homeostasis.
منابع مشابه
High Sugar-Induced Insulin Resistance in Drosophila Relies on the Lipocalin Neural Lazarillo
In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS,...
متن کاملLigand binding-dependent functions of the lipocalin NLaz: an in vivo study in Drosophila.
Lipocalins are small extracellular proteins mostly described as lipid carriers. The Drosophila lipocalin NLaz (neural Lazarillo) modulates the IIS pathway and regulates longevity, stress resistance, and behavior. Here, we test whether a native hydrophobic pocket structure is required for NLaz to perform its functions. We use a point mutation altering the binding pocket (NLaz(L130R)) and control...
متن کاملSex-dependent modulation of longevity by two Drosophila homologues of human Apolipoprotein D, GLaz and NLaz.
Apolipoprotein D (ApoD), a member of the Lipocalin family, is the gene most up-regulated with age in the mammalian brain. Its expression strongly correlates with aging-associated neurodegenerative and metabolic diseases. Two homologues of ApoD expressed in the Drosophila brain, Glial Lazarillo (GLaz) and Neural Lazarillo (NLaz), are known to alter longevity in male flies. However, sex differenc...
متن کاملInduction of Heme Oxygenase -1 By Lipocalin 2 Mediated By Nf-Kb Transcription Factor
Purpose: Effect of lipocalin 2 on the expression of heme oxygenase I , II and NF-kB transcription factor was the purpose of this survey. Materials and Methods: Lcn2 was cloned to pcDNA3.1 plasmid by using genetic engineering method. The recombinant vector was transfected to CHO and HEK293T to establish stable cell expressing lipocalin 2. The presence of lipocalin 2 gene in these cells was confi...
متن کاملGrasshopper Lazarillo, a GPI-anchored Lipocalin, increases Drosophila longevity and stress resistance, and functionally replaces its secreted homolog NLaz.
Lazarillo (Laz) is a glycosyl-phosphatidylinositol (GPI)-linked glycoprotein first characterized in the developing nervous system of the grasshopper Schistocerca americana. It belongs to the Lipocalins, a functionally diverse family of mostly secreted proteins. In this work we test whether the protective capacity known for Laz homologs in flies and vertebrates (NLaz, GLaz and ApoD) is evolution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Genetics
دوره 5 شماره
صفحات -
تاریخ انتشار 2009